교수자 소개
-
최성준안녕하세요. 저는 현재 박사 과정 중에 있으며, 기계 학습과 로보틱스를 주로 연구하고 있습니다. 오랜 시간을 관악산에 거주하였으나 지금은 LA에서 리서치 인턴을 하고 있습니다. 대부분의 시간을 이런 저런 생각을 하거나 코딩을 하면서 보내고, 종종 논문을 읽고, 또 쓰기도 합니다. 최근엔 생활비를 벌기 위해서 강의도 가끔씩 합니다. 주로 연구하는 분야는 모방 학습과 강화 학습 분야이고, 관련 연구자들을 만나서 잡담하는 것을 좋아합니다. 연구 관련 연락은 언제든 환영이에요. :)
강의계획
강의목록
-
CHAPTER 1. Elementary of mathematics
- Introduction
- Set theory
- Measure theory
- Probability
- Random variable
- Random process
- Functional analysis
-
CHAPTER 2. Gaussian process
- Introduction
- Gaussian process
- Weight space view
- Function space view
- Gaussian process latent variable model (GPLVM)
- Gaussian process Application : 최성준님 연구 소개
-
CHAPTER 3. Bayesian deep neural network (1)
- Introduction
- Minimizing the Description Length
- Ensemble Learning in Bayesian Neural Network
- Practical variational inference
- Bayes by backprop (BBB)
-
CHAPTER 4. Bayesian deep neural network (2)
- Summary of Variational Inference
- Dropout as a Bayesian Approximation
- Stein Variational Gradient Descent
-
CHAPTER 5. Summary
- Summary
-
CHAPTER 6. Uncertainties in Deep Learning
- Introduction
- Uncertainty in Deep Learning
- Representing Inferential Uncertainty through Sampling
- Bayesian Uncertainty Estimation
- Predictive Uncertainty Estimation using Deep Ensembles
- Uncertainties in Bayesian Deep Learning for Computer Vision
- Uncertainty -Aware Reinforcement Learning
- Safe Visual Navigation via Deep Learning
- Uncertainty-Aware Learning using Mixture Density Networks
추가정보
[Publisher] 서울대학교 시각 및 학습 연구실: 김민정